Five Challenges to FPGA-Based Prototyping
What is FPGA prototyping, and why should I care?
Not long after the introduction of FPGAs in the late 1980s, engineers seized upon these devices for building system prototypes of ASIC and SoC designs. Containing vast amounts of configurable logic, these versatile components were a natural choice for building and testing the latest designs. As designs grew in both size and complexity, FPGAs also grew to provide ever-increasing (equivalent) gate counts.
With earlier generations of FPGAs, it often took a large array of devices to fully accommodate a logic design. However, using today's devices with their mega-million gate counts, it may require only a handful of devices -- or even just one -- to implement a complete design.
The utility of a working FPGA prototype is undisputed. It allows hardware designers to develop and test their systems, and it provides software developers early access to a fully functioning hardware platform.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Meet InPA, a newcomer in FPGA-based prototyping
- Five Key Techniques to Accelerate Software Bring-Up for Multi-Die Systems
- The Challenges of Video on Smart Mobile Devices
- Embedded Processors in FPGAs Amplify Verification Challenges
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview