For automotive design, faster is better
Current trends in automotive design include a rapid migration to connected and autonomous vehicles, a significant per-vehicle increase in electronic content and, of course, the evergreen demands of greater efficiency, safety and security. While developers have a lot more on their plate, they are expected to bring these solutions to market quickly. Extending the footprint of ARM-based MCUs throughout the entire vehicle enables easier development through synergy. That is, after all, one of the major benefits of using ARM – the ability to develop in an ecosystem that offers commonality in architecture and tools. The majority of auto-interior features wouldn’t necessitate ARM’s Cortex-A or Real-Time architectures. For automotive applications, the ARM solution in terms of price, feature set and performance is the Cortex-M0+, an architecture powerful enough to accommodate advanced functions such as sensorless BLDC motor control, yet simple enough to replace 8- or 16-bit devices in less processor-intensive applications such as lighting control.
Time-to-market challenges don’t end with an MCU architecture, however. In order to truly acquire a competitive edge in the automotive and industrial sectors, designers must have access to intuitive development tools, application-specific software, reference designs and source code, if not production-ready turn-key solutions.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related Blogs
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?
- VIP Factory: Faster, Better, Cost Effective Verification IPs
- How to Meet Self-Driving Automotive Design Goals Part 1
- How to Meet Self-Driving Automotive Design Goals Part 2
Latest Blogs
- From guesswork to guidance: Mastering processor co-design with Codasip Exploration Framework
- Enabling AI Innovation at The Far Edge
- Unleashing Leading On-Device AI Performance and Efficiency with New Arm C1 CPU Cluster
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics