How to Meet Self-Driving Automotive Design Goals Part 1
Achronix anticipates that the favored self-driving architecture of the future will be increasingly decentralized. However, both the centralized and decentralized architectural design approaches will require hardware acceleration in the form of far more lookaside coprocessing than is currently realized. Whether centralized or decentralized, the anticipated computing architectures for automated and autonomous driving systems will clearly be heterogeneous and require a mix of processing resources used for tasks ranging in complexity from local-area-network control, translation, and bridging to parallel object recognition based on deep-learning algorithms running on neural networks. As a result, the current level of more than 100 CPUs found in luxury piloted vehicles could easily swell to several hundred CPUs and other processing elements for more advanced, autonomous vehicles.
To read the full article, click here
Related Blogs
- How to Meet Self-Driving Automotive Design Goals Part 2
- Don't Let the Bugs Bite: Reducing Design Reworks and Errors with Advanced Linting (Part 1)
- How to Safeguard Automotive OTA Updates at Scale
- How to Shift Left on Low-Power Design Verification, Early and Quickly
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview