The Why and How of Fine-Grain 3D Integration
As many of you know, 3D technologies in the marketplace today have huge TSVs. For example, TSMC's 28nm technology has 6um diameter TSVs with 5um keep-out zone. Other manufacturers are offering similar TSV sizes too. When you start comparing these with on-chip feature sizes (28nm), you'll understand why I use the term "huge" to describe these TSVs. In contrast, fine-grain 3D technologies are defined as those having TSV pitches smaller than 500nm.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- TierLogic lifts the veil: another take on the 3D FPGA
- IP Integration : What is the difference between stitching and weaving?
- Which Direction for EDA - 2D, 3D, or 360?
- Heard at DAC: is IP integration the real high-level design?
Latest Blogs
- FiRa 3.0 Use Cases: Expanding the Future of UWB Technology
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits