Why You Need to Consider Energy Efficiency of Your HPC SoC Early On
Data centers and data transmission networks consume around 1% of the world’s electricity. As AI becomes increasingly pervasive, the demands of neural networks and large language models on the underlying hardware and software infrastructure will rise dramatically. Estimates vary as far as how much of an impact we’ll see in the coming years. At the extreme side is the prognosis that energy consumption will eventually outpace global electricity supply.
Regardless of which estimates are correct, it’s clear that energy consumption of hyperscale data centers is a dire concern that must be addressed now. How can we create more power-efficient SoCs for high-performance computing (HPC) applications—without sacrificing the performance goal?
In this blog post, I’ll highlight why it’s critical to adopt a shift-left mentality and address your design’s energy efficiency at the start. Read on to learn more about tools and techniques for low-power designs.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- Unleashing Innovation and Energy Efficiency at TSMC Events
- Driving Higher Energy Efficiency in Automotive Electronics Designs
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Bringing MEMS and asynchronous logic into an SoC design flow
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility