A custom RISC-V vector instruction to accelerate structured-sparse matrix multiplications
A novel AI-acceleration paper presents a method to optimize sparse matrix multiplication for machine learning models, particularly focusing on structured sparsity. Structured sparsity involves a predefined pattern of zero values in the matrix, unlike unstructured sparsity where zeros can occur anywhere. The research was conducted by Democritus University of Thrace (DUTH) in Greece and was sponsored by Codasip University Program.
Structured sparsity has emerged as a promising approach to streamline the complexity of modern Machine Learning (ML) applications and facilitate the handling of sparse data in hardware. Accelerating ML models, whether for training or inference, heavily relies on efficient execution of equivalent matrix multiplications, which are often performed on vector processors or custom matrix engines.
Integrating structured sparsity into existing vector execution
The aim of this study was to integrate the simplicity of structured sparsity into existing vector execution flow and vector processing units (VPUs), thus expediting the corresponding matrix multiplications with minimal redesign in mind. To achieve this goal, a novel vector index-multiply-accumulate instruction is introduced. This instruction facilitates low-cost indirect reads from the vector register file, thereby reducing unnecessary memory traffic and enhancing data locality.
Related Semiconductor IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
- 32 Bit - Embedded RISC-V Processor Core
Related Blogs
- Effectively hiding sensitive data with RISC-V Zk and custom instructions
- Adding RISC-V CPU Custom Extensions Can Boost Performance, Reduce Power, and Cut Cost in 5G, AI. AR/VR, and IoT applications
- NASA Uses RISC-V Vector Spec to Soup Up Space Computers
- RISC-V customization, HW/SW co-optimization, and custom compute
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?