A custom RISC-V vector instruction to accelerate structured-sparse matrix multiplications
A novel AI-acceleration paper presents a method to optimize sparse matrix multiplication for machine learning models, particularly focusing on structured sparsity. Structured sparsity involves a predefined pattern of zero values in the matrix, unlike unstructured sparsity where zeros can occur anywhere. The research was conducted by Democritus University of Thrace (DUTH) in Greece and was sponsored by Codasip University Program.
Structured sparsity has emerged as a promising approach to streamline the complexity of modern Machine Learning (ML) applications and facilitate the handling of sparse data in hardware. Accelerating ML models, whether for training or inference, heavily relies on efficient execution of equivalent matrix multiplications, which are often performed on vector processors or custom matrix engines.
Integrating structured sparsity into existing vector execution
The aim of this study was to integrate the simplicity of structured sparsity into existing vector execution flow and vector processing units (VPUs), thus expediting the corresponding matrix multiplications with minimal redesign in mind. To achieve this goal, a novel vector index-multiply-accumulate instruction is introduced. This instruction facilitates low-cost indirect reads from the vector register file, thereby reducing unnecessary memory traffic and enhancing data locality.
To read the full article, click here
Related Semiconductor IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
Related Blogs
- Effectively hiding sensitive data with RISC-V Zk and custom instructions
- Adding RISC-V CPU Custom Extensions Can Boost Performance, Reduce Power, and Cut Cost in 5G, AI. AR/VR, and IoT applications
- NASA Uses RISC-V Vector Spec to Soup Up Space Computers
- RISC-V customization, HW/SW co-optimization, and custom compute
Latest Blogs
- From guesswork to guidance: Mastering processor co-design with Codasip Exploration Framework
- Enabling AI Innovation at The Far Edge
- Unleashing Leading On-Device AI Performance and Efficiency with New Arm C1 CPU Cluster
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics