RISC-V customization, HW/SW co-optimization, and custom compute
Do we still need to introduce and define RISC-V? You know, the open-source instruction set architecture (ISA) that is gaining popularity thanks to its flexibility, scalability, and modularity. Okay, we just did, just to be sure we are all on the same page. One of the key benefits and the main “raison d’être” of RISC-V is the possibility to tailor both the instruction set (ISA) and the internal design (microarchitecture) of the processor to meet specific application requirements. This customization capability extends to custom compute solutions, enabling developers to create hardware optimized for their workloads. In this blog post, let’s explore the benefits of RISC-V customization and custom compute, and industry applications.
The traditional approach to hardware design and its limits
To read the full article, click here
Related Semiconductor IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- Compact Embedded RISC-V Processor
- Multi-core capable 64-bit RISC-V CPU with vector extensions
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
Related Blogs
- RISC-V customization gets a standing ovation - no fragmentation drama!
- Semidynamics: A Single-Software-Stack, Configurable and Customizable RISC-V Solution
- Adding RISC-V CPU Custom Extensions Can Boost Performance, Reduce Power, and Cut Cost in 5G, AI. AR/VR, and IoT applications
- Embedded World 2023: it's time to architect all ambitions with custom compute
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained