RISC-V customization, HW/SW co-optimization, and custom compute
Do we still need to introduce and define RISC-V? You know, the open-source instruction set architecture (ISA) that is gaining popularity thanks to its flexibility, scalability, and modularity. Okay, we just did, just to be sure we are all on the same page. One of the key benefits and the main “raison d’être” of RISC-V is the possibility to tailor both the instruction set (ISA) and the internal design (microarchitecture) of the processor to meet specific application requirements. This customization capability extends to custom compute solutions, enabling developers to create hardware optimized for their workloads. In this blog post, let’s explore the benefits of RISC-V customization and custom compute, and industry applications.
The traditional approach to hardware design and its limits
Related Semiconductor IP
- RISC-V CPU IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
Related Blogs
- Effectively hiding sensitive data with RISC-V Zk and custom instructions
- Custom Compute for Edge AI: Accelerating innovation with Lund University and Codasip University Program
- RISC-V customization gets a standing ovation - no fragmentation drama!
- Semidynamics: A Single-Software-Stack, Configurable and Customizable RISC-V Solution
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?