Case Study: Unlocking the Capabilities of Today's Complex SoCs for Vision
As SoCs become more complex and specialized, incorporating numerous and varied processor cores and dedicated accelerators, it has become more and more difficult to program them. This is particularly true of chips targeting vision-based applications. To meet the performance demands and high data rates of vision applications, vendors are designing heterogeneous devices that incorporate different classes of processors—CPUs, DSPs, GPUs, FPGAs, and special-purpose engines. Programming each of these processors traditionally required differing skill sets—engineers working in languages such as C++, Python, and Java for CPUs, for example, may not have the knowledge of C and assembly for programming DSPs, or OpenCL for GPUs, or Verilog or VHDL for programmable logic.
To fully support the functionality of these complex devices, chip vendors are increasingly challenged to provide easy-to-use and efficient tools that enable developers to take advantage of all processing resources on a chip. To be competitive in the growing market for vision-enabled products, vendors must deliver robust and intuitive tools that enable developers to build efficient software easily.
To read the full article, click here
Related Semiconductor IP
- Multi-channel, multi-rate Ethernet aggregator - 10G to 400G AX (e.g., AI)
- Multi-channel, multi-rate Ethernet aggregator - 10G to 800G DX
- 200G/400G/800G Ethernet PCS/FEC
- 50G/100G MAC/PCS/FEC
- 25G/10G/SGMII/ 1000BASE-X PCS and MAC
Related Blogs
- Protocol Debug for Complex SoCs
- Complex SoCs Need a Simple API
- Building Verification Infrastructure for Complex PCIe Verification
- The Importance of Memory Architecture for AI SoCs