CDNLive: Routing at 10nm
At CDNLive Silicon Valley, Geeta Garg and Chad Hale of ARM, and Ming Yue of Cadence reported on what it took to pull together a version of Innovus Implementation System and a version of the ARM physical library that would work cleanly at 10nm. They titled their talk Routing at 10nm, Challenging but Achievable With Collaboration. There are a lot of moving parts in a design like this, with EDA tools from Cadence, standard cells from ARM, the foundry. That is before adding in other IP, and let's not forget about the system/SoC company actually doing the design.
So what's new at 10nm? There is, of course, the usual fact that designs get larger, which stresses the tools more, especially since computers don't keep getting significantly faster every couple of years to bail us out. So what are the other changes at 10nm?
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related Blogs
- Traditional Cost Reduction Returns At 10nm, says Globalfoundries
- Who Will Lead at 10nm?
- Altera Back to TSMC at 10nm? Xilinx Staying There
- Cadence Implementation Flow for an ARM Cortex-A73 at 10nm
Latest Blogs
- How fast a GPU do you need for your user interface?
- PCIe 6.x and 112 Gbps Ethernet: Synopsys and TeraSignal Achieve Optical Interconnect Breakthroughs
- Powering the Future of RF: Falcomm and GlobalFoundries at IMS 2025
- The Coming NPU Population Collapse
- Driving the Future of High-Speed Computing with PCIe 7.0 Innovation