Bridging Analog and Digital worlds at high speed with the JESD204 serial interface
To meet the increased demand for converter speed and resolution, JEDEC proposed the JESD204 standard describing a new efficient serial interface to handle data converters. In 2006, the JESD204 standard offered support for multiple data converters over a single lane with the following standard revisions; A, B, and C successively adding features such as support for multiple lanes, deterministic latency, and error detection and correction while constantly increasing Lane Rates. The JESD204D revision is currently in the works and aims to once more increase the Lane Rate to 112Gbps with the change of lane encoding and a switch of the error correction scheme to Reed-Solomon. Most of today’s high-speed converters make use of the JESD standard and the applications fall within but are not limited to Wireless, Telecom, Aerospace, Military, Imaging, and Medical, in essence anywhere a high-speed converter can be used.
The JESD204 standard is dedicated to the transmission of converter samples over serial interfaces. Its framing allows for mapping M converters of S samples each with a resolution of N bits, onto L lanes with a F octet sized frames that, in succession, form larger Multiframes or Extended Multiblock structures described by K or E parameters. These frames allow for various placement of samples in high- or low-density (HD) and for each sample to be accompanied by CS control bits within a sample container of N’ bits or at the end of a frame (CF). These symbols, describing the sample data and frame formatting, paired with the mapping rules dictated by the standard, allow to communicate a shared understanding of how the transmitted data should be mapped and interpreted by both parties engaging in the transmission.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Analog Bits Steals the Show with Working IP on TSMC 3nm and 2nm and a New Design Strategy
- Calligo Enables Next-Gen Computing at Scale with Synopsys Digital Design Flow
- Setting the Pace with PCIe® Gen 7: Alphawave Semi's Success at PCIe® Devcon 2024
- Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
Latest Blogs
- Breaking the Silence: What Is SoundWire‑I3S and Why It Matters
- What It Will Take to Build a Resilient Automotive Compute Ecosystem
- The Blind Spot of Semiconductor IP Sales
- Scalable I/O Virtualization: A Deep Dive into PCIe’s Next Gen Virtualization
- UEC-LLR: The Future of Loss Recovery in Ethernet for AI and HPC