Always-On IoT - FDSOI's Always Better? What About Wafers? (Questions from Shanghai)
Mahesh Tirupattur, EVP at low-power SERDES pioneer Analog Bits lead off the panel discussion at the recent FD-SOI Forum in Shanghai with the assertion that for anything “always on” in IoT, FD-SOI’s always better. They had a great experience porting their SERDES IP to 28nm FD-SOI (which they detailed last spring – see the ppt here). The port from 28 bulk to 28 FDSOI took 2 1/2 months (vs. to FinFET, which took almost 6). Even without using body bias, they got performance up by around 15% and leakage down by about 30% (he added that with body bias, they could get five times that).
He compared porting to FD-SOI to playing high school ball, vs. a port to FinFET which is like competing in the Olympics. ESD was different, but not a big deal – you just need to “read the manual”. Heating? Nothing an engineer can’t resolve. For IoT, FinFETs are like using a cannon to shoot a mosquito, he quipped.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- How to Design to the "Always-on" IoT Imperative
- Lowering Energy Consumption in Always-on IoT Designs
- ST To Run 28nm FD-SOI NovaThor Next Week
- Can "Less than Moore" FDSOI provides better ROI for Mobile IC?
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform