AI-Based Sequence Detection for IP and SoC Verification & Validation
A couple of years ago at the Design Automation Conference (DAC), as I walked the exhibit floor I was amused by how many EDA vendors had jumped on the marketing bandwagon for artificial intelligence (AI) and machine learning (ML). Many company slogans, booth posters, and demonstrations claimed that AI/ML techniques had been incorporated into their products. Doubtless some of these claims were true, but for certain companies and product categories it was hard to believe. In this post, I’ll discuss a real use of AI/ML technology at Agnisys, already implemented and available to users now.
Let’s start by defining a few terms. AI is a broad description referring to any computer program that automatically does something that would traditionally have required human intelligence. AI works at its best by combining large amounts of data with fast, iterative processing and intelligent algorithms. ML is a subset of AI using advanced techniques and models that enable computers to figure out interesting things from the datasets and deliver AI applications. Along with the algorithms, what is most important for AI/ML is the quality and quantity of the data used to train the model for these algorithms.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- Silicon Creations Presents Architectures and IP for SoC Clocking
- Skymizer Reduces Verification Cycles for AI Accelerator IP Development by 33% with Synopsys HAPS Prototyping
- Tech Note: Use this Flexible and Efficient AC’97 IP Core for Simple Audio Interfaces and Legacy System Upgrades
- Smarter SoC Design for Agile Teams and Tight Deadlines
Latest Blogs
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring