Addressing memory safety with software
In the previous post we looked at the underlying causes of memory unsafety which was using unsafe programming languages. In particular, C and C++ have been widely used for performance but at the same time carry risks of errors that cause unsafe memory accesses. Let’s now look at software approaches to mitigating memory unsafety.
Software mitigations
A variety of software mitigations have been proposed such as those listed by Saar Amar. The methods vary in granularity, determinism and implementation overhead.
Stack canaries
A well-known example of mitigating memory unsafety with software is the stack canary. If a program is executing and calls a subroutine, the address of the next instruction in the program is pushed onto the call stack and used as a return pointer (RP). When the subroutine has finished execution the return address is popped from the call stack.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related Blogs
- Software building blocks for faster functional safety certification
- Solve SoC Bottlenecks with Smart Local Memory in AI/ML Subsystems
- Addressing Challenges with FPGAs in Space Using the GR716B Microcontroller
- Trillions of Cycles per Day: How SiFive Boosts IP and Software Validation with Synopsys HAPS Prototyping System
Latest Blogs
- From guesswork to guidance: Mastering processor co-design with Codasip Exploration Framework
- Enabling AI Innovation at The Far Edge
- Unleashing Leading On-Device AI Performance and Efficiency with New Arm C1 CPU Cluster
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics