Solve SoC Bottlenecks with Smart Local Memory in AI/ML Subsystems
In today’s disaggregated electronics supply chain the (1) application software developer, (2) the ML model developer, (3) the device maker, (4) the SoC design team and (5) the NPU IP vendor often work for as many as five different companies. It can be difficult or impossible for the SoC team to know or predict actual AI/ML workloads and full system behaviors as many as two or three years in advance of the actual deployment. But then how can that SoC team make good choices provisioning compute engines and adequate memory resources for the unknown future without defaulting to “Max TOPS / Min Area”?
There has to be a smarter way to eliminate bottlenecks while determining the optimum local memory for AI/ML subsystems.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- High Speed Memory in Smart Phones: MIPI UniPro v1.8 for JEDEC UFS v3.0
- Faster Embedded Smartphone & Tablet Memory Is On The Way
- The Challenges of Video on Smart Mobile Devices
- SSD Interfaces and Performance Effects
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?