28 nm - The Last Node of Moore's Law
We can still make transistors smaller but not cheaper
We have been hearing about the imminent demise of Moore’s Law quite often recently. Most of those predictions have been targeting the 7nm node and 2020 as the end point. But we need to recognize that 28nm is actually the last node of Moore's Law, beyond which we can make smaller transistors and pack more of them into the same die size but we can not reduce the cost, and in most cases, the same SoC will have a higher cost!
The famous Moore's Law was presented as an observation by Moore in his 1965 Electronics paper "The future of integrated electronics". Quoting: "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years." Clearly Moore's Law is about "The complexity for minimum component costs", and the minimum component cost will be at the 28nm node for many years, as we will detail in the remainder of this blog.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- 28nm Was Last Node of Moore's Law
- Moore's Law seen hitting big bump at 14 nm
- Moore's Law and 28nm Yield
- Moore's Law Has Stopped at 28nm!
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview