Reclaiming lost yield through methodical power integrity optimization
Christian Petersen, Teklatech A/S
EETimes (4/1/2013 10:32 AM EDT)
As designs are moving to 28nm and beyond, designers fully experience the effects of the much higher power density and diminishing effectiveness of decoupling capacitances at these geometries: failures due to dynamic power noise integrity issues is a significant contributor to yield loss in many designs. Synchronous switching and increasing di/dt at advanced process nodes (Figure 1) makes it increasingly challenging for designers to deal with on-chip dynamic voltage drop (DVD) and high frequency electromagnetic interference (EMI). And neither is to be taken lightly; studies have shown DVD fluctuations introduce sizable gate delays causing timing-related yield loss, and EMI from digital switching similarly cause mixed-signal yield loss due to compromised noise integrity.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- A modeling approach for power integrity simulation in 3D-IC designs
- Leakage power optimization for 28nm and beyond
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
- Power Optimization using Multi BIT flops and MIMCAPs in 16nm technology and below
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems