Reclaiming lost yield through methodical power integrity optimization
Christian Petersen, Teklatech A/S
EETimes (4/1/2013 10:32 AM EDT)
As designs are moving to 28nm and beyond, designers fully experience the effects of the much higher power density and diminishing effectiveness of decoupling capacitances at these geometries: failures due to dynamic power noise integrity issues is a significant contributor to yield loss in many designs. Synchronous switching and increasing di/dt at advanced process nodes (Figure 1) makes it increasingly challenging for designers to deal with on-chip dynamic voltage drop (DVD) and high frequency electromagnetic interference (EMI). And neither is to be taken lightly; studies have shown DVD fluctuations introduce sizable gate delays causing timing-related yield loss, and EMI from digital switching similarly cause mixed-signal yield loss due to compromised noise integrity.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- A modeling approach for power integrity simulation in 3D-IC designs
- Leakage power optimization for 28nm and beyond
- Effective Optimization of Power Management Architectures through Four standard "Interfaces for the Distribution of Power"
- Power Optimization using Multi BIT flops and MIMCAPs in 16nm technology and below
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant