Ultrawideband SoCs pose new challenges to manufacturers
(10/15/2007 11:54 AM EDT) -- EE Times
What do these three killer wireless applications have in common: Viewing HDTV on a mobile device using 4G WiMax technologies; using existing WLAN infrastructure to make phone calls; and using ultrawideband (UWB) technology to download or print pictures from a digital camera?
Answer: All use a complex digital modulation scheme to transfer data over the airwaves, all are a variant of orthogonal frequency division multiplexing (OFDM) and all will become standard capabilities in the next 18 to 24 months as consumer-driven demand for wireless applications hastens convergence of mobile audio, video and data.
As advanced UWB wireless applications and ICs evolve, test technology must also evolve. ATE manufacturers need to prepare today to address test challenges on the horizon: high-end frequency coverage, broad frequency band range, high modulation bandwidth, low power levels, frequency agility and complex modulation analysis.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Design Challenges Drive Need for New Routing Architecture
- Power management ICs: meeting new design paradigm challenges
- SOCs: IP is the new abstraction
- Addressing the new challenges of ASIC/SoC prototyping with FPGAs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS