Three ways of looking at a sigma-delta ADC device
By Vladyslav Kozlov, Dialog Semiconductor, a Renesas company
The growing availability of digital ICs like microcontrollers, microprocessors, and field-programmable gate arrays (FPGAs) allows developers to use complex digital processing techniques rather than analog signal conditioning. For this reason, analog-to-digital converters (ADCs) have become a widely-used component in mixed-signal circuits.
There are many types of ADCs: successive-approximation ADCs, sigma-delta (ΣΔ) ADCs, direct-conversion ADCs, capacitor charge/discharge-based ADCs, ADCs with voltage-to-frequency converters, and others. All these ADCs provide different accuracy characteristics, sampling rate limitations, and cost points.
This article outlines three major design considerations for selecting a ΣΔ ADC.
To read the full article, click here
Related Semiconductor IP
- Sigma-Delta ADC
- 14-Bit 25MSPS Sigma-Delta ADC with PGA - SMIC 40nm
- 14-Bit 25MSPS Sigma-Delta ADC with PGA - SMIC 40nm
- 14-Bit 25MSPS Sigma-Delta ADC with PGA - SMIC 40nm
- 14-Bit 25MSPS Sigma-Delta ADC with PGA - SMIC 40nm
Related White Papers
- MIPI in next generation of AI IoT devices at the edge
- Choosing a Processor for Machine Learning at the Edge
- SRAM PUF: A Closer Look at the Most Reliable and Most Secure PUF
- Specifying a PLL Part 1: Calculating PLL Clock Spur Requirements from ADC or DAC SFDR
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS