Choosing a Processor for Machine Learning at the Edge
By Manisha Agrawal, Texas Instruments
EETimes (June 23, 2019)
Not all machine learning models need processing on the order of several TOPS. Understanding the performance, latency and accuracy need of your application is a critical first step to choose a processor for machine learning at the edge.
Machine learning has become popular for solving machine vision and other embedded computing problems. While classical machine learning algorithms need human intervention to extract features from data, machine learning algorithms or network models learn how to extract important features in data and make intelligent predictions about that data.
Below, figure 1 shows a few examples where machine learning technology is adding intelligence to a variety of devices. In smart home appliances like a smart oven, machine learning can be used to classify food inside the oven and set the cooking temperature and time of the oven accordingly. In factories, machine learning can be used for detecting defects in the products or it can be used for predictive maintenance to help predict the remaining useful life of the motor or detecting anomaly in motor operations. In a vehicle, it can be used to detect cars, pedestrians, traffic signs, etc. on the road. It can also be used in devices doing natural language translation.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- A novel 3D buffer memory for AI and machine learning
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- TOPS: The Truth Behind a Deep Learning Lie
- MIPI in next generation of AI IoT devices at the edge
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS