The Role of Interconnection in the Evolution of Advanced Packaging Technology
By Ki-ill Moon, Head of PKG Technology Development, SK hynix (August 18, 2023)
Intel co-founder Gordon Moore famously predicted that the number of transistors on a chip would double every one to two years. Known as Moore’s Law, this forecast held true until recently thanks to developments in pattern-miniaturization technology. However, Moore’s Law may no longer be valid as technological advancements have reached their limits and costs have risen from the use of expensive equipment such as extreme ultraviolet (EUV) lithography systems. Meanwhile, there is still great market demand for ever-improving semiconductor technologies. To bridge this gap in technological advancement and meet the semiconductor market’s needs, one solution has emerged: advanced semiconductor packaging technology.
Although advanced packaging is highly complex and involves a wide mixture of technologies, interconnection technology remains at its core. This article will cover how packaging technology has evolved and SK hynix’s recent efforts and accomplishments in helping to advance the field.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- The rise of FPGA technology in High-Performance Computing
- The role of cache in AI processor design
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- The Future of Embedded FPGAs - eFPGA: The Proof is in the Tape Out
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS