How to instrument your design with simple SystemVerilog assertions
Ping Yeung, Ph.D., Mentor Graphics Corp.
1/26/2011 10:19 AM EST
Introduction
Functional coverage, stimulus generation, and run management are the three major interrelated tasks of functional verification today. Among these, functional coverage arguably looms as the most important, largely because coverage closure is the main criteria for tapeout. Measures of coverage provide critical feedback, such as the existence of gaps. As shown in figure 1, a comprehensive coverage model should consist of end-to-end functional coverage, transaction coverage on major interfaces, structural coverage of critical RTL structures and basic code coverage.

Figure 1: A comprehensive coverage model
An assertion-based methodology helps catch bugs, audit the quality of the regression environment and guard against illegal module use. Such a methodology need not be developed by the verification team alone. Designers can provide significant value by capturing their intimate knowledge about the internal operations of the design in the form of assertions.
Assertions and functional coverage are really two sides of the same coin [1]. Both provide detailed observation points within a register transfer level (RTL) design. And while assertionsâ design checking attributes are well known, the additional benefit -- supplementing functional coverage measurement -- is frequently overlooked by design teams. It turns out that the task of placing assertions in a design is similar to the task of finding interesting and relevant functional coverage points. Accordingly, it often makes sense to add assertions and coverage points concurrently.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- SystemVerilog 3.1 adds assertions and testbench automation
- Using SystemVerilog Assertions in RTL Code
- SoC Test and Verification -> Assertions speed processor core verification
- OpenVera 2.0 assertions empower verification
Latest White Papers
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance