System-level design of mixed-signal ASICs using simulink: Efficient transitions to EDA environments
Andreas Mauderer, Jan-Hendrik Oetjens Robert Bosch GmbH, Wolfgang Rosenstiel, University of Tuebingen
EETimes (5/28/2012 10:29 AM EDT)
Simulink models are used as executable specifications in commonly used design flows for mixed-signal ASICs. Based on these specifications, analog and digital components are directly implemented in mixed-signal design environments. This step constitutes a large leap of abstraction. In this work, we address this aspect by showing and discussing an approach for automated transitions from Simulink models representing analog and digital components to HDL descriptions using HDL Coder. On the one hand, we translate analog Simulink components into continuous-value discrete-time HDL descriptions that can serve as reference behavioral models in the mixed-signal design environment. On the other hand, for digital Simulink components, we developed optimizations for Simulink models in order to achieve resource-efficient HDL descriptions. Both solutions in the analog and digital domain were integrated into Simulink Model Advisor. An evaluation of the presented design flow, as applied to an automotive hardware design, is shown.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- Mixed-signal SOC verification using analog behavioral models
- Increase battery life of Consumer Products using architecture simulation
- How to Design SmartNICs Using FPGAs to Increase Server Compute Capacity
- VLSI Physical Design Methodology for ASIC Development with a Flavor of IP Hardening
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics