Using switched capacitors to create programmable analog logic blocks in mixed-signal designs
Sachin Gupta, Cypress Semiconductor
EETimes (8/18/2010 2:18 AM EDT)
Any physical system design needs both analog and digital functionality. Achieving a modular, programmable design is crucial for the demanding applications of future, which has led to more and more designs integrating subsystems and using mixed-signal architectures.
Scalability as well as dynamic changes in customer requirements are two of the challenges designers face when implementing a system using fixed-function components. A modular, programmable design helps overcome the issues associated with the porting of designs to different devices at a later stage in a product’s lifecycle.
For these kinds of applications, a programmable design allows a more flexible approach compared to fixed-function implementations. Achieving such flexibility in the analog domain, however, has been a challenge for developers. The use of switched capacitor circuits greatly helps resolve this issue
Switched capacitor blocks are the basic building blocks of a programmable analog solution. They enable the integration of both analog and digital functions onto a single chip and define today’s true system-on-chip (SoC) architectures. Conventional analog signal processing circuits use continuous time circuits consisting of resistors, capacitors and operational amplifiers.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Embedded Systems: Programmable Logic -> Programming enters designer's core
- Embedded Systems: Programmable Logic -> Common gateway networks enable remote programs
- Embedded Systems: Programmable Logic -> FPGAs don remote reprogram habits
- Embedded Systems: Programmable Logic -> Embarrassment of riches hinders proper use of Moore's Law
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant