Adopting An SOC-based Approach to Designing Handheld Medical Devices
Embedded.com (05/27/09, 03:06:00 PM EDT)
In designing embedded devices for the variety of medical devices, selecting the right components to meet design specifications, keep costs down, maximize power efficiency, and manage the physical size of the device are only some of the factors to be considered.
If these weren't sufficient, developers must also guarantee device reliability while ensuring that the components used adhere to FDA rules.
One such FDA rule is that the components that comprise the medical device have to be in production for the next five years. Given these constraints, many developers are turning to System-on-Chip architectures to shorten design cycle time, reduce component count, and reduce product cost in medical applications.
Figure 1: Blood glucose monitor
Figure 2: Blood pressure monitor
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Super Edge Medical SoC (SEMC)
- Embedded Systems -> Linux scaled from desk to handheld
- Enabling Video for Handset and Handheld Devices
- DVB-H handheld video content protection with ISMA Encryption
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions