Understanding Skew in 100GBASE-R4 applications
Tim Warland, AppliedMicro
EETimes (12/14/2011 3:35 PM EST)
The 100GBASE-R4 physical layer device converts 10-lanes running 10Gbps (CAUI) to 4-lanes running 25Gbps. The conversion process is data agnostic with no provision for rate adaptation, consequently skew management is an integral part of end-to-end system performance.
Recently ratified, the 100Gigabit Ethernet Standard, (IEEE802.3ba) defines a 100GBASE-LR4 and 100GBASE-ER4 interface for optical interfaces on single-mode fiber. The architecture includes the Physical Coding sub layer (PCS), connected on one side to the reconciliation sub-layer (RS) and MAC and to the PMA/PMD on the other side. Actually implementations are more likely to combine the PCS and PMA with the RS and MAC and interface to a second PMA and PMD (referred to as the PHY)
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Signal skew managed dynamically
- Verifying Dynamic Clock switching in Power-Critical SoCs
- Consider ASICs for implementing functional safety in battery-powered home appliances
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension