Understanding Skew in 100GBASE-R4 applications
Tim Warland, AppliedMicro
EETimes (12/14/2011 3:35 PM EST)
The 100GBASE-R4 physical layer device converts 10-lanes running 10Gbps (CAUI) to 4-lanes running 25Gbps. The conversion process is data agnostic with no provision for rate adaptation, consequently skew management is an integral part of end-to-end system performance.
Recently ratified, the 100Gigabit Ethernet Standard, (IEEE802.3ba) defines a 100GBASE-LR4 and 100GBASE-ER4 interface for optical interfaces on single-mode fiber. The architecture includes the Physical Coding sub layer (PCS), connected on one side to the reconciliation sub-layer (RS) and MAC and to the PMA/PMD on the other side. Actually implementations are more likely to combine the PCS and PMA with the RS and MAC and interface to a second PMA and PMD (referred to as the PHY)
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Signal skew managed dynamically
- Distorted Waveform Phenomena in 7nm Technology Node and its Impact on Signoff Timing Analysis
- New AI Computing in Consumer Electronics
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions