Reducing system complexity by using a single-supply logic-level shifter
Planet Analog -- Jul 01, 2008 (9:56 AM)
VLSI technology is enabling the realization of complex System on Chip (SoC) designs where different parts of a system, such as analog and digital circuits, as well as passive components, are integrated onto a single chip. In such SoCs, different parts of the chip run at different voltages to achieve optimum speed/power ratios, and it is very common to have two or more voltage domains in a single chip. For communication among the different parts of a chip having different supply voltages, level shifters are required to convert the logic signal from one voltage level to the other voltage level. Level shifters are also required at the pad-ring and chip-core interface, where low-voltage logic signals from chip core are shifted to the higher voltage levels at which the pad ring is operating.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- "Chip Level IP" for low power single chip wireless transceivers
- Low Power Bi-directional Level Shifter
- A High Density, High Performance, Low Power Level Shifter
- A Virtual Reality Camera Design with 16 Full HD Video Inputs Sharing a Single DRAM Chip
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions