Selecting the right hardware configuration for the signal processing platform
Deepak Shankar
embedded.com (November 21, 2016)
The quality of signal processing systems such as a software defined radio or a communication modem is dependent on the performance of the selected hardware platform. Early design explorations enable the designer to gain insights into implementation challenges, architectural decisions to enhance performance and power, and hardware/software partitioning before Register-Transfer level (RTL) and software are available.
In addition, early design explorations assist architectural design decisions that facilitate planning for current and future requirements. Designers can further extend the design explorations to conduct fault analysis and identify test cases for verification.
This article presents the system level modelling and simulation methodology to architect a signal processing platform for software-defined radios or high-speed communication modems early in the design flow.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Infinite-ISP: An Open Source Hardware Image Signal Processor Platform for all Imaging Needs
- Reconfiguring Design -> Reconfigurable computing aims at signal processing
- Reconfigurable signal processing key in base station design
- Programmable network processing blade needed in switching platform
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS