Sensor fusion enables sophisticated next-gen applications
Rich Collins, Synopsys
embedded.comm (June 01, 2014)
Although a novelty only a few years ago, sensors are now almost ubiquitous due to the explosive growth of smart devices. The ability to read and interpret environmental conditions such as pressure, temperature, and proximity is featured in many applications. Sophisticated sensor applications combine sensor data from multiple sources to provide a higher order of functionality. This practice is called sensor fusion. Combining an accelerometer, gyroscope, and magnetometer (compass) to create an accurate motion sensor is a prime example of sensor fusion.
Increasing complexity of sensor fusion algorithms requires additional processing capability and software overhead. To reduce impact on the applications processor, sensor functions are being handled by off-chip co-processors as well as integrated, on-chip subsystems. This article highlights some interesting sensor fusion applications, and the increasing need for IP solutions that support the necessary features for integration into a wide range of market applications where sensor fusion algorithms play an important role.
The growth of sensor fusion market
There has been significant growth in systems incorporating sensor fusion technology as more semiconductor suppliers integrate sensor interfaces into their system-on-chips (SoCs). Although motion sensing in smartphones is the most common example of sensor fusion implementation, these functions also are being incorporated into many different applications such as those found in the automotive, consumer electronics, and digital home markets. According to Semico research, the number of systems incorporating sensor fusion is predicted to grow from 400M units in 2012 to over 2.5B units in 2016 – an annual growth rate of almost 60%.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- VESA Video Compression on MIPI DSI-2 Enables Next-Generation Display Applications
- Risks and Precautions to take care while using On-Chip temperature sensors in Safety critical automotive applications
- Exploring design methodologies for next-generation IoT sensors
- Opto-electronics -> High-density fiber-optic modules eye next-gen switching architecture
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension