Safety in SoCs: Accelerating the Road to ISO 26262 Certification for the ARC EM Processor
By Steven Parkinson, R&D Engineer, Synopsys
Today’s system-on-chip (SoC) designs are becoming more complex, increasing the pressure on verification and design teams to deliver fully functional designs. Recent studies have shown that over 50% of the development time on a complex IC is now being spent on verification, revealing the severity of the problem project teams are facing. As more SoC designs are used in electronic systems deployed in safety-critical applications, adhering to functional safety standards such as ISO 26262 has become an important consideration when defining the verification methodology. This white paper outlines the key requirements for ISO 26262 certification and demonstrates how to accelerate the development of safety-critical IP and SoCs through the use of out-of-the-box safety-ready IP with advanced verification qualification tools and methodologies.
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Fundamentals of Semiconductor ISO 26262 Certification: People, Process and Product
- Is Your Processor IP ISO 26262-Compliant?
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 1
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 2
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS