Safety in SoCs: Accelerating the Road to ISO 26262 Certification for the ARC EM Processor
By Steven Parkinson, R&D Engineer, Synopsys
Today’s system-on-chip (SoC) designs are becoming more complex, increasing the pressure on verification and design teams to deliver fully functional designs. Recent studies have shown that over 50% of the development time on a complex IC is now being spent on verification, revealing the severity of the problem project teams are facing. As more SoC designs are used in electronic systems deployed in safety-critical applications, adhering to functional safety standards such as ISO 26262 has become an important consideration when defining the verification methodology. This white paper outlines the key requirements for ISO 26262 certification and demonstrates how to accelerate the development of safety-critical IP and SoCs through the use of out-of-the-box safety-ready IP with advanced verification qualification tools and methodologies.
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Fundamentals of Semiconductor ISO 26262 Certification: People, Process and Product
- Is Your Processor IP ISO 26262-Compliant?
- Understanding virtualization facilities in the ARMv8 processor architecture
- Testing Of Repairable Embedded Memories in SoC: Approach and Challenges
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design