Buy or Build an RTOS: Does it Matter for Medical Devices?
By Colin Walls, Mentor Graphics Embedded Systems Division
Perhaps the most interesting thing about working with embedded systems is variability. Each device has a unique hardware and software architecture and its own individual functionality. As a result, it's a difficult challenge to design software development tools and operating systems that accommodate the enormous range of requirements.
And during tough economic conditions, it can be unwise for developers to compromise their core competencies by outsourcing. Developers are however, more likely to outsource non-differentiated components that are available commercially (Figure 1 below).
![]() |
| Figure 1. As much as 30% of the design cycle is focused on non-differentiated activity. |
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Adopting An SOC-based Approach to Designing Handheld Medical Devices
- Technologist backs low-voltage CMOS for SoC devices
- Mobile Devices: RISC-Java blend powers cores
- Opto-electronics -> Quantum wells integrate optical devices
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
