RF integration: Full SoC, or just a SiP?
(01/14/2008 9:00 AM EST) - EE Times
The radio-frequency circuitry in mobile and portable devices remains some of the most resistant to integration. RF devices are very picky about who their neighbors are, and they sometimes find surprising ways to add interference to the signals they are responsible for handling. In the push for smaller footprints, the RF circuitry needs to shrink. The question is, what should be integrated, how, and how much?
There are competing strategies here: Integrate the power amplifier (PA) with the transceiver in a system-on-chip (SoC), leave it to stand alone, or combine it with the passive and control circuitry that is off-chip in a system-in-package (SiP). Which one is the winner? For applications requiring low output power and short ranges (think Bluetooth), the answer is SoC all the way. For applications requiring long range and high output power (think 802.11n WLAN connections), the best bet is to go with a SiP for the RF front-end circuitry (the PA, maybe the low-noise amplifier, matching circuitry, passives, switches, etc.). The standalone PA may be left out in the cold.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- RF front-ends for GSM mobile handsets continue down path of integration
- RF integration: Changing the face of test
- Digital RF techniques ease chip integration challenges
- A cost-effective and highly productive Framework for IP Integration in SoC using pre-defined language sensitive Editors (LSE) templates and effectively using System Verilog Interfaces
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design