Speeding power estimation from weeks to hours
Ophir Turbovich, Cambridge Silicon Radio and Thomas Li, SpringSoft
EETimes (11/19/2012 10:59 AM EST)
This paper describes a new methodology that automatically generates a chip design’s gate-level waveform from the RTL design environment without the need to bring up the gate-level environment. The new waveform generation methodology reduces the effort to perform gate-level power estimation from weeks to hours, using established EDA technology from Springsoft and Cambridge Silicon Radio's established power estimation flow and tools. This major reduction in effort and increase in designer productivity enables CSR to analyze power characteristics much earlier in the design flow than is practically possible using traditional, high-effort gate-level analysis. Moreover, the new methodology produces waveforms identical (or nearly identical) to those generated by gate-level simulation. Consequently, the design can be analyzed and optimized iteratively throughout the post-synthesis design flow, enabling much earlier detection and easier resolution of power issues. The paper discusses:
- Power analysis challenge
- New automated gate-level waveform methodology
- Springsoft’s Siloti™ Visibility Automation System
- Analysis results
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Accurate and Efficient Power estimation Flow For Complex SoCs
- Unified Methodology for Effective Correlation of SoC Power Estimation and Signoff
- Performances Estimation Metamodel for MDA Based SoC Design
- Towards Activity Based System Level Power Estimation
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension