Speeding power estimation from weeks to hours
Ophir Turbovich, Cambridge Silicon Radio and Thomas Li, SpringSoft
EETimes (11/19/2012 10:59 AM EST)
This paper describes a new methodology that automatically generates a chip design’s gate-level waveform from the RTL design environment without the need to bring up the gate-level environment. The new waveform generation methodology reduces the effort to perform gate-level power estimation from weeks to hours, using established EDA technology from Springsoft and Cambridge Silicon Radio's established power estimation flow and tools. This major reduction in effort and increase in designer productivity enables CSR to analyze power characteristics much earlier in the design flow than is practically possible using traditional, high-effort gate-level analysis. Moreover, the new methodology produces waveforms identical (or nearly identical) to those generated by gate-level simulation. Consequently, the design can be analyzed and optimized iteratively throughout the post-synthesis design flow, enabling much earlier detection and easier resolution of power issues. The paper discusses:
- Power analysis challenge
- New automated gate-level waveform methodology
- Springsoft’s Siloti™ Visibility Automation System
- Analysis results
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Accurate and Efficient Power estimation Flow For Complex SoCs
- Unified Methodology for Effective Correlation of SoC Power Estimation and Signoff
- Performances Estimation Metamodel for MDA Based SoC Design
- Towards Activity Based System Level Power Estimation
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events