New Embedded DRAM Solutions for High-Performance SoCs
by Hideya Horikawa and Hamid Aslam
New leading-edge applications ranging from games to networking infrastructure equipment are driving the need to include large-capacity and high-speed memory on-chip rather than separately as a discrete device. On-chip memory devices enable throughput capabilities into the gigabit-per-second range, as well as compact designs with modest power dissipation and smaller footprints in office, industrial equipment and lightweight electronic devices.
The semiconductor industry is meeting the demands presented by these market trends with system-on-a-chip (SoC) designs. SoCs contain the processor, logic, analog macros and memory needed to perform all of the critical functions; they also represent a major departure from previous system-on-a-board development. In this new, highly integrated chip landscape, innovative solutions for embedded memory are being addressed.
New leading-edge applications ranging from games to networking infrastructure equipment are driving the need to include large-capacity and high-speed memory on-chip rather than separately as a discrete device. On-chip memory devices enable throughput capabilities into the gigabit-per-second range, as well as compact designs with modest power dissipation and smaller footprints in office, industrial equipment and lightweight electronic devices.
The semiconductor industry is meeting the demands presented by these market trends with system-on-a-chip (SoC) designs. SoCs contain the processor, logic, analog macros and memory needed to perform all of the critical functions; they also represent a major departure from previous system-on-a-board development. In this new, highly integrated chip landscape, innovative solutions for embedded memory are being addressed.
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Enabling High Performance SoCs Through Multi-Die Re-use
- Building high performance interrupt responses into an embedded SoC design
- A new era for embedded memory
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant