New Embedded DRAM Solutions for High-Performance SoCs
New leading-edge applications ranging from games to networking infrastructure equipment are driving the need to include large-capacity and high-speed memory on-chip rather than separately as a discrete device. On-chip memory devices enable throughput capabilities into the gigabit-per-second range, as well as compact designs with modest power dissipation and smaller footprints in office, industrial equipment and lightweight electronic devices.
The semiconductor industry is meeting the demands presented by these market trends with system-on-a-chip (SoC) designs. SoCs contain the processor, logic, analog macros and memory needed to perform all of the critical functions; they also represent a major departure from previous system-on-a-board development. In this new, highly integrated chip landscape, innovative solutions for embedded memory are being addressed.
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Enabling High Performance SoCs Through Multi-Die Re-use
- Building high performance interrupt responses into an embedded SoC design
- A new era for embedded memory
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design