Seamless integration of multicore embedded systems
By Giuseppe De Simone, Paolo Pierani, and Massimo Quagliani from Ericsson
Embedded.com, (09/16/09, 11:55:00 AM EDT)
ABSTRACT
This paper presents a seamless and continuous integration approach that allows to gradually introduce performance improvements while preserving an established functional baseline in an embedded system with demanding characteristics requirements. The following topics will be addressed: how performance improvements can be broken down in small steps with objective and measurable goals, how to predict, verify and measure them. An ad-hoc fault localization strategy is also proposed to exploit the multi-core DSP hardware and minimize human troubleshooting time. The purpose and benefits of this approach is to avoid a big bang and find critical faults very early in the project and secure project lead time, quality and budget.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Co-Designed Cache Coherency Architecture for Embedded Multicore Systems
- Android, Linux and Real-Time Development for Embedded Systems
- NAND Flash memory in embedded systems
- Integration Optimized SuperSpeed USB3.0 IP from Cadence - Delivering Superior Value to the SOC Designer
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions