Seamless integration of multicore embedded systems
By Giuseppe De Simone, Paolo Pierani, and Massimo Quagliani from Ericsson
Embedded.com, (09/16/09, 11:55:00 AM EDT)
ABSTRACT
This paper presents a seamless and continuous integration approach that allows to gradually introduce performance improvements while preserving an established functional baseline in an embedded system with demanding characteristics requirements. The following topics will be addressed: how performance improvements can be broken down in small steps with objective and measurable goals, how to predict, verify and measure them. An ad-hoc fault localization strategy is also proposed to exploit the multi-core DSP hardware and minimize human troubleshooting time. The purpose and benefits of this approach is to avoid a big bang and find critical faults very early in the project and secure project lead time, quality and budget.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Co-Designed Cache Coherency Architecture for Embedded Multicore Systems
- Continuous integration of complex reconfigurable systems
- Android, Linux and Real-Time Development for Embedded Systems
- NAND Flash memory in embedded systems
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design