Managing intelligent I/O processing on DSP + GPP SoCs
Loc Truong, Texas Instruments
EETimes (6/7/2011 12:08 AM EDT)
This Product How-To article about TI’s OMAP-L138 C6-Integra DSP + ARM processor details the steps a developer needs to follow in building an application that must balance I/O processing tasks between a general purpose microcontroller and a digital signal processor.
DSP system developers face a difficult task of choosing options to meet increasing system performance requirements. Up the speed, optimize the code, add more processors, or even all of the above! It’s possible, but the developers must partition code intelligently between the general purpose processor and digital signal processors (DSPs) to make the best use of their architectures.
For instance, certain input/output (I/O) tasks can be offloaded to the general purpose processor (GPP) to implement smart I/O processing with features such as predictive caching, buffer parsing, sequencing and more.
Adding an obstacle, the developer may need to change the functionality of the system down the road and must have the flexibility to change the roles of each core to make sure hard and soft real-time can be met.
System developers must also decide if an operating system is needed, and if so, how to make sure the system-level I/O throughput comes closer to theoretical raw throughput maximums. I will examine the options a DSP system developer faces when partitioning I/O processing tasks and how to best implement the GPP in certain cases.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Signal Processing on the MIPS 74K
- What's your sine? Finding the right algorithm for digital frequency synthesis on a DSP
- Digital Signal Processing (DSP) Verification
- Building Process For the C/C++ Program on Complex SoCs
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design