LPDDR flash: A memory optimized for automotive systems
By Sandeep Krishnegowda, Infineon Technologies
EDN (December 5, 2023)
Next-generation automotive systems are advancing beyond the limits of currently available technologies. The addition of advanced driver assistance systems (ADAS) and other advanced features requires greater processing power and increased connectivity throughout the vehicle. On top of this, automotive OEMs are expanding the user experience (UX) to introduce innovations that improve convenience, efficiency, and safety for drivers and passengers.
This combination of new and advanced features is straining the capacity of traditional automotive E/E architectures (see Figure 1). To address this need, OEMs are consolidating more functions into fewer systems by taking a domain/zonal architectural approach. And these systems often need substantially more non-volatile memory for code storage than is available as embedded flash integrated into processors.
To read the full article, click here
Related Semiconductor IP
- DDR and LPDDR Combo PHY
- LPDDR Synthesizable Transactor
- LPDDR Memory Model
- LPDDR DFI Verification IP
- LPDDR Controller IIP
Related White Papers
- NAND Flash memory in embedded systems
- Optimizing flash memory selection for automotive & other uses
- Understanding the contenders for the Flash memory crown
- A new era for embedded memory
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS