Low power design is here to stay
How about your existing verification strategy?
By Krishna Balachandran, director of product marketing, Low Power Verification Products, Synopsys Inc.
edadesignline.com (January 06, 2010)
Low power design drivers
Low power design is not new. Extending battery life for mobile devices meant playing design tricks to conserve energy in every possible way. The desire to integrate a system on a chip and reduce overall cost led designers to rapidly adopt advanced manufacturing processes. The move to smaller manufacturing geometries accelerated the need for low power design because of the exponential increase in leakage power from smaller transistors packed in ever larger numbers on a single chip.
Governmental regulations have been a more recent driver. Driven by the popularity of green initiatives, specifications have been standardized for power consumption for almost all household electronic gadgets. The regulations impose limits on how much energy a device can consume when it is idle, which has the far reaching effect of extending low power design to even plugged-in-the wall devices. What is new is that almost all electronic designs are becoming power managed designs. Verification of low power designs, which until recently was a challenge for just a handful of all designs, is fast becoming every designer's problem.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Low Power Design in SoC Using Arm IP
- Low power is everywhere
- An ESD efficient, Generic Low Power Wake up methodology in an SOC
- A need for static and dynamic Low Power Verification
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems