Latch-Based RAMs and the Hidden Capacitor
Ron Neale, Independent Electrical/Electronic Manufacturing Professional
EETimes (12/31/2016 10:13 AM EST)
Is there a place for a volatile DRAM replacement? While the VLT as a DRAM replacement might be attractive, any success hinges on effective and innovative solutions to some major problems.
The use of latched threshold switching devices to replace a DRAM, where the off and latched states are used as the two memory logic states, is a recent proposal. With the apparent advantages of no requirement for a new technology, for a dynamic refresh cycle or a separate capacitor.
Two types of device offer this latched memory DRAM replacement possibility. One is based on a single crystal thyristor structure of the type proposed by Kilopass using their vertical layer thyristor structure VLT-RAM, illustrated in Figure 1, for which they have reported at MemCon 2016 significant progress.1 The second latching memory possibility could be achieved by the use of an amorphous film threshold switch, the latter offering the intriguing possibility of a high-density thin film 3D stacked structure.
To read the full article, click here
Related White Papers
- What's the Difference Between CXL 1.1 and CXL 2.0?
- Semiconductors and software lead the way to sustainability
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- M31 on the Specification and Development of MIPI Physical Layer
Latest White Papers
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics
- In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference