Latch-Based RAMs and the Hidden Capacitor
Ron Neale, Independent Electrical/Electronic Manufacturing Professional
EETimes (12/31/2016 10:13 AM EST)
Is there a place for a volatile DRAM replacement? While the VLT as a DRAM replacement might be attractive, any success hinges on effective and innovative solutions to some major problems.
The use of latched threshold switching devices to replace a DRAM, where the off and latched states are used as the two memory logic states, is a recent proposal. With the apparent advantages of no requirement for a new technology, for a dynamic refresh cycle or a separate capacitor.
Two types of device offer this latched memory DRAM replacement possibility. One is based on a single crystal thyristor structure of the type proposed by Kilopass using their vertical layer thyristor structure VLT-RAM, illustrated in Figure 1, for which they have reported at MemCon 2016 significant progress.1 The second latching memory possibility could be achieved by the use of an amorphous film threshold switch, the latter offering the intriguing possibility of a high-density thin film 3D stacked structure.
To read the full article, click here
Related White Papers
- Automotive Architectures: Domain, Zonal and the Rise of Central
- AI, and the Real Capacity Crisis in Chip Design
- An 800 Mpixels/s, ~260 LUTs Implementation of the QOI Lossless Image Compression Algorithm and its Improvement through Hilbert Scanning
- The pitfalls of mixing formal and simulation: Where trouble starts
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions