Improving performance and security in IoT wearables
By Pritesh Mandaliya, Cypress Semiconductor
Many IoT applications – including connected cars, factory automation, smart city, connected health, and wearables – require nonvolatile memory to store data and code. Traditionally, embedded applications have used external Flash memory for this purpose.
However, as modern semiconductor technology faces challenges in scaling and cost as it moves to smaller geometries, it has become increasingly difficult to embed Flash memory within the host SoC. Therefore, future MCU or SoC designs are targeting system-in-package (SiP) or the use of external Flash. This trend does not address the needs of IoT applications like wearables because of their small form factor, strict cost constraints, and low-power related requirements.
To address these issues, Flash memory manufacturers are developing architectures that optimize size and power consumption. At the same time, they are introducing important new capabilities that support greater endurance, reliability, security, and safety.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- How to achieve better IoT security in Wi-Fi modules
- The Growing Imperative Of Hardware Security Assurance In IP And SoC Design
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events