Improving performance and security in IoT wearables
By Pritesh Mandaliya, Cypress Semiconductor
Many IoT applications – including connected cars, factory automation, smart city, connected health, and wearables – require nonvolatile memory to store data and code. Traditionally, embedded applications have used external Flash memory for this purpose.
However, as modern semiconductor technology faces challenges in scaling and cost as it moves to smaller geometries, it has become increasingly difficult to embed Flash memory within the host SoC. Therefore, future MCU or SoC designs are targeting system-in-package (SiP) or the use of external Flash. This trend does not address the needs of IoT applications like wearables because of their small form factor, strict cost constraints, and low-power related requirements.
To address these issues, Flash memory manufacturers are developing architectures that optimize size and power consumption. At the same time, they are introducing important new capabilities that support greater endurance, reliability, security, and safety.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- How to achieve better IoT security in Wi-Fi modules
- IoT Security: Exploring Risks and Countermeasures Across Industries
- The Growing Imperative Of Hardware Security Assurance In IP And SoC Design
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models