Improving analog design verification using UVM
Mike Bartley, Test and Verification Solutions
EDN (March 23, 2015)
As technology becomes more integrated into our everyday life, our chips need to better communicate with the analog world. Most modern system on chip (SoC) designs therefore contain analog and mixed-signal (AMS) elements integrated with digital components. According to Sandip Ray of Intel, AMS elements currently consume about 40% of the design effort, and an estimated 50% of errors in recent chips that require a redesign are due to bugs in the AMS portion of the design [1].
This increase in AMS content in silicon creates several verification challenges: how do we verify the analog design itself, its integration with the digital, and whether the combination achieves the intended overall function? However, there is no standard or even widely adopted approach to this despite the continuous increase in analog content. One potential route is via an efficient, reusable AMS verification approach using the Universal Verification Methodology (UVM) outlined below:
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Metric Driven Verification of Reconfigurable Memory Controller IPs Using UVM Methodology for Improved Verification Effectiveness and Reusability
- Design patterns in SystemVerilog OOP for UVM verification
- Improving Verification Efficiency Using Application Specific Instruction Processors
- Improving SystemVerilog UVM Transaction Recording and Modeling
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design