Basics of hardware/firmware interface codesign
Gary Stringham
Embedded.com (July 7, 2013)
Hardware and firmware engineering design teams often run into problems and conflicts when trying to work together. They come from different development environments, have different tool sets and use different terminology. Often they are in different locations within the same company or work for different companies.
The two teams have to work together, but often have conflicting differences in procedures and methods. Since their resulting hardware and firmware work have to integrate successfully to build a product, it is imperative that the hardware/firmware interface – including people, technical disciplines, tools and technology – be designed properly
This article provides seven principles hardware/firmware codesign that if followed will ensure that such collaborations are a success. They are:
- Collaborate on the Design;
- Set and Adhere to Standards;
- Balance the Load;
- Design for Compatibility;
- Anticipate the Impacts;
- Design for Contingencies; and
- Plan Ahead.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Tips for doing effective hardware/firmware codesign
- Tips for doing effective hardware/firmware codesign: Part 2
- Soc Design -> Codesign, co-verification applied to DSP core
- Soc Design -> IP models support codesign efforts
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design