Reducing Power in Embedded Systems by Adding Hardware Accelerators
By Rodney Frazer, Altera
Embedded.com -- (04/09/08, 03:21:00 PM EDT)
The rule of thumb in embedded system design has been that adding hardware increases power demands. The careful use of hardware accelerators, however, inverts the rule: adding hardware can reduce power.
By analyzing algorithms and implementing appropriate accelerators in programmable logic, developers can increase a design's performance while reducing power consumption in an embedded computing system.
Test results show that accelerators extend tradeoff options from as much as 200-fold performance improvement for the same power to the same performance with a 90% power reduction.
Programmable logic has, somewhat undeservedly, maintained a reputation from its early history as being a power-hungry approach to logic design. The rules of thumb have been that power consumption in an integrated circuit is roughly proportional to the chip's area for a given process technology, and a design implemented in programmable logic tends to be larger than if implemented in hard-wired logic. But these two factors, although suggestive, are misleading.
Embedded.com -- (04/09/08, 03:21:00 PM EDT)
The rule of thumb in embedded system design has been that adding hardware increases power demands. The careful use of hardware accelerators, however, inverts the rule: adding hardware can reduce power.
By analyzing algorithms and implementing appropriate accelerators in programmable logic, developers can increase a design's performance while reducing power consumption in an embedded computing system.
Test results show that accelerators extend tradeoff options from as much as 200-fold performance improvement for the same power to the same performance with a 90% power reduction.
Programmable logic has, somewhat undeservedly, maintained a reputation from its early history as being a power-hungry approach to logic design. The rules of thumb have been that power consumption in an integrated circuit is roughly proportional to the chip's area for a given process technology, and a design implemented in programmable logic tends to be larger than if implemented in hard-wired logic. But these two factors, although suggestive, are misleading.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- H.264 Baseline Decoder With ADI Blackfin DSP and Hardware Accelerators
- H.264 Baseline Encoder with ADI Blackfin DSP and Hardware Accelerators
- Programmable accelerators: hardware performance with software flexibility
- SoC interconnect performance verification methodology based on hardware emulator
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection