FPGA Design for Real-Time Applications
Few component technologies have evolved as rapidly in the last few years as FPGAs. In this highly competitive market, each new generation of devices delivers faster speeds, improved density, larger memory resources, and more flexible interfaces.
Hardware multipliers have afforded FPGAs a strategic entry into DSP applications, where they are now challenging both ASICs and programmable DSPs. Coaxing these new devices to handle higher sampling rates requires careful allocation and deployment of FPGA resources.
Indeed, DSP capability has become one of the most significant product strategies for FPGAs, as evidenced by sharp increases in engineering and marketing investments in this technology on the part of FPGA vendors over the last few years.
Read more ....
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Generative AI for Analog Integrated Circuit Design: Methodologies and Applications
- Design and Real Time Hardware Implementation of a Generic Fuzzy Logic Controller for a Transport/Diffusion System
- An FPGA design flow for video imaging applications
- How to exploit the uniqueness of FPGA silicon for security applications
Latest White Papers
- Morphlux: Programmable chip-to-chip photonic fabrics in multi-accelerator servers for ML
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication