ESL Methods for Optimizing a Multi-media Phone Chip
By Danilo Piergentili, David Coupe, NXP Semiconductors
May 27, 2008 -- edadesignline.com
Our team is chartered to validate and optimize the architecture of our NXP mobile phone chips. This is a very challenging application domain, as an ever increasing set of multi-media and wireless communication functions need to be integrated into one SoC. Next to a growing number of communication standards, today's mobile phones support a large variety of multi-media applications like MP3 audio, video recording and playback, and digital still camera.
The trend towards high-quality multimedia content and higher communication bandwidth drastically increases the complexity of the underlying SoC architecture. In previous designs a single application processor was sufficient to run the rather simple phone software and to control the modem subsystem. Today numerous dedicated IP blocks are necessary to perform the multimedia functions with the required performance and energy efficiency.

May 27, 2008 -- edadesignline.com
Our team is chartered to validate and optimize the architecture of our NXP mobile phone chips. This is a very challenging application domain, as an ever increasing set of multi-media and wireless communication functions need to be integrated into one SoC. Next to a growing number of communication standards, today's mobile phones support a large variety of multi-media applications like MP3 audio, video recording and playback, and digital still camera.
The trend towards high-quality multimedia content and higher communication bandwidth drastically increases the complexity of the underlying SoC architecture. In previous designs a single application processor was sufficient to run the rather simple phone software and to control the modem subsystem. Today numerous dedicated IP blocks are necessary to perform the multimedia functions with the required performance and energy efficiency.

1. Block diagram of a multi-media mobile phone.
The high-level block-diagram of the multi-media subsystem of a mobile phone is depicted in Figure 1. The four components on the top are initiators on the bus, whereas the multi-port memory controller is a target.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- Multi Chip, Multi Environment Simulation, Bringing Software Closer to Hardware and Saving Money
- Multimodal Chip Physical Design Engineer Assistant
- Security dons chip, card mantles
- 2002 will bring more chip consolidation after worst year ever, says Dataquest
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models