ESL Methods for Optimizing a Multi-media Phone Chip
May 27, 2008 -- edadesignline.com
Our team is chartered to validate and optimize the architecture of our NXP mobile phone chips. This is a very challenging application domain, as an ever increasing set of multi-media and wireless communication functions need to be integrated into one SoC. Next to a growing number of communication standards, today's mobile phones support a large variety of multi-media applications like MP3 audio, video recording and playback, and digital still camera.
The trend towards high-quality multimedia content and higher communication bandwidth drastically increases the complexity of the underlying SoC architecture. In previous designs a single application processor was sufficient to run the rather simple phone software and to control the modem subsystem. Today numerous dedicated IP blocks are necessary to perform the multimedia functions with the required performance and energy efficiency.

1. Block diagram of a multi-media mobile phone.
The high-level block-diagram of the multi-media subsystem of a mobile phone is depicted in Figure 1. The four components on the top are initiators on the bus, whereas the multi-port memory controller is a target.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Multi Chip, Multi Environment Simulation, Bringing Software Closer to Hardware and Saving Money
- Security dons chip, card mantles
- 2002 will bring more chip consolidation after worst year ever, says Dataquest
- Chip IP revenues fall, but overall EDA remains healthy in Q1, says group
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design