Designing DSP-based motor control using fuzzy logic
By Byron Miller, Embedded.com
(03/03/08, 04:55:00 PM EST)
Variable-speed drive (VSD) motors provide hope for greatly reducing energy consumption and reliance on foreign fuels. In one approach, digital signal processors (DSPs) are being used to create a new generation of VSD-based controllers for motors such as brushless direct current (BLDC) motors.
However, these motors present challenges. Controlling motor speed on a BLDC motor is complicated when using traditional proportional, integral, and differential (PID) controllers because they rely on a complex mathematical model and are computationally intensive. An alternative approach is to use fuzzy logic (FL) algorithms to eliminate the need for complex math formulas and provide an easy-to-understand solution. FL motor control also has a shorter development cycle compared to PID controllers, and thus a faster time-to-market. This article discusses the process of using FL algorithms to control BLDC motors using a Texas Instruments c28xx fixed-point family of DSPs.
(03/03/08, 04:55:00 PM EST)
Variable-speed drive (VSD) motors provide hope for greatly reducing energy consumption and reliance on foreign fuels. In one approach, digital signal processors (DSPs) are being used to create a new generation of VSD-based controllers for motors such as brushless direct current (BLDC) motors.
However, these motors present challenges. Controlling motor speed on a BLDC motor is complicated when using traditional proportional, integral, and differential (PID) controllers because they rely on a complex mathematical model and are computationally intensive. An alternative approach is to use fuzzy logic (FL) algorithms to eliminate the need for complex math formulas and provide an easy-to-understand solution. FL motor control also has a shorter development cycle compared to PID controllers, and thus a faster time-to-market. This article discusses the process of using FL algorithms to control BLDC motors using a Texas Instruments c28xx fixed-point family of DSPs.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- 32-bit DSP right mix for embedded control
- Implementing Field-oriented Brushless Motor Control Using an ARM7 Processor
- How to use FPGAs for quadrature encoder-based motor control applications
- Advanced BLDC Motor Control using Freescale Ultra Reliable MPC5676R/MPC5674F MCU
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design