Designing DSP-based motor control using fuzzy logic
(03/03/08, 04:55:00 PM EST)
Variable-speed drive (VSD) motors provide hope for greatly reducing energy consumption and reliance on foreign fuels. In one approach, digital signal processors (DSPs) are being used to create a new generation of VSD-based controllers for motors such as brushless direct current (BLDC) motors.
However, these motors present challenges. Controlling motor speed on a BLDC motor is complicated when using traditional proportional, integral, and differential (PID) controllers because they rely on a complex mathematical model and are computationally intensive. An alternative approach is to use fuzzy logic (FL) algorithms to eliminate the need for complex math formulas and provide an easy-to-understand solution. FL motor control also has a shorter development cycle compared to PID controllers, and thus a faster time-to-market. This article discusses the process of using FL algorithms to control BLDC motors using a Texas Instruments c28xx fixed-point family of DSPs.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related White Papers
- 32-bit DSP right mix for embedded control
- Implementing Field-oriented Brushless Motor Control Using an ARM7 Processor
- How to use FPGAs for quadrature encoder-based motor control applications
- Advanced BLDC Motor Control using Freescale Ultra Reliable MPC5676R/MPC5674F MCU
Latest White Papers
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems