How to use FPGAs for quadrature encoder-based motor control applications
By Glen Young, Actel
September 11, 2007 -- pldesignline.com
Precisely tracking speed, acceleration, and position of a motor's rotor is an essential requirement for many motor control applications found in everyday equipment such as fax machines, elevators, and medical equipment. A closed-loop control scheme is able to bring motor feedback information, such as back electromotive force (BEMF) voltage or supply current to the control system. Rotary encoding is a common mechanism for the delivery of accurate speed, acceleration, and position of the motor rotor.
Rotary encoders are commonly deployed in the closed-loop rotor systems used in a wide variety of applications from robotics and high end photographic lenses to opto-mechanical mice and trackballs to rotating radar platforms. A rotary encoder is an electro-mechanical device for converting the angular position of a shaft or axle to a digital code. For many applications and equipment that need to track object location, velocity and accelerations accurately, a rotary encoder offers a cost-effective solution.
Relative and Absolute are two primary types of rotary encoders. A quadrature encoder is in the relative encoder family and is most commonly used in high-speed motor control systems; it also facilitates the ability to determine motor direction.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- Selection of FPGAs and GPUs for AI Based Applications
- How to use FPGAs to develop an intelligent solar tracking system
- How embedded FPGAs fit AI applications
- How to use snakes to speed up software without slowing down the time-to-market?
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY