Deterministic dynamic memory allocation & fragmentation in C & C++
By Colin Walls
edadesignline.com (January 11, 2010)
In C and C++, it can be very convenient to allocate and de-allocate blocks of memory as and when needed. This is certainly standard practice in both languages and almost unavoidable in C++.
However, the handling of such dynamic memory can be problematic and inefficient. For desktop applications, where memory is freely available, these difficulties can be ignored. For embedded - generally real time - applications, ignoring the issue is not an option.
Dynamic memory allocation tends to be non-deterministic; the time taken to allocate memory may not be predictable and the memory pool may become fragmented, resulting in unexpected allocation failures. This article details the problems and an approach to deterministic dynamic memory allocation.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Dynamic Memory Allocation and Fragmentation in C and C++
- System-level tools slash SoC dynamic power
- Variable-integration-time image sensor for wide dynamic range
- Dynamic Floorplanning: A Practical Method Using Relative Dependencies for Incremental Floorplanning
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval