Demystifying ESL for embedded systems designs
Mar 1 2007 (1:00 AM) -- Embedded Systems Design
While the definitions of ESL may vary, the end result should be the same, namely letting system developers analyze their designs at a higher level of abstraction.
A recent Google search on "electronic system level" yielded more than 86,900 results (and growing daily), quickly demonstrating how much information is available on this topic. But despite the abundance of buzz, it's not always easy to find a clearcut explanation of what this design method encompasses and how it applies to embedded systems design. From the broadest perspective, electronic system level (ESL) design consists of tools and methods that enable designers to describe and analyze ICs at a high level of abstraction.
This original definition was targeted at high-end chip designers. If you look at a concept introduced by Wired's Editor in Chief Chris Anderson called "the long tail," these high-end applications fit into the "head" as more high-volume and vertical applications.1 This concept is visualized in Figure 1.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Quality Assurance for Embedded Systems
- ACE: Confidential Computing for Embedded RISC-V Systems
- Android, Linux and Real-Time Development for Embedded Systems
- NAND Flash memory in embedded systems
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design