Custom Corner Characterization for Optimal ASIC/SoC Designs
Naveen Narang & Venkata Krishna, Open-Silicon
EETimes (5/25/2016 05:50 PM EDT)
Today's characterization tools offer a very good solution for extracting the best performance out of an ASIC/SoC for any specified PVT operating conditions.
A typical corner (TT) is no longer typical for most applications in today's world. For that matter, standard PVT Corners (FF/TT/SS), generally, do not represent the exact environmental conditions in which an ASIC/SoC will be functioning. This means the voltage may not be a nominal Vdd in a typical case or Vdd±10% in an extreme case; and the temperature may not be 25C in a typical case or 125C/-40C in extreme cases. Also, in today's market, every µW of power saved, and nS of delay avoided, makes a significant difference in a product's performance and cost. Therefore, it is important to know how a system behaves under real-time PVT conditions. One needs to characterize foundation IPs at these special (custom) corners to avoid overdesign and achieve optimal product for best power and performance.
When estimating the power and timing numbers of an IP at a custom corner (e.g., @95C and Vdd+3%), it is not easy to derive values from regular SS, TT, and FF characteristics as these may not support linear extrapolations. Even small errors in calculation can be very risky. One approach is to use characterization tools (e.g., Silicon Smart from Synopsys) that can easily characterize foundation IPs to estimate power and performance of an SoC at any custom corner with substantial accuracy using reference ".lib" files.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Optimal OTP for Advanced Node and Emerging Applications
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- How AI is changing the game for high-performance SoC designs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS