Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
The increase in the number, size and quality of displays inside the cabin marks a profound shift in interior design philosophy, from the car as a mobility product to the car as an entertainment hub and workspace.
By Danny Fisher, Gowin Semiconductor
EETimes Europe (August 7, 2024)
With the global transition in the automotive industry from the internal-combustion engine to electric drivetrains well under way, the basis of competition in this market is undergoing a paradigm shift. In the old automotive world, the drivetrain was the primary factor that distinguished one segment from another: Consumers understood the differences in cost and appeal between, for instance, a compact car with a 1-liter petrol engine, a family sedan with a 2-liter diesel engine and a high-performance model with a 4-liter turbocharged petrol engine.
By contrast, there is no such hierarchy of electric drivetrains. Instead, the focus of competition in the electric-vehicle market is more on other factors than on the drivetrain: styling, driving range and, crucially, the in-cabin experience.
It turns out that, given the choice, car buyers want the information, entertainment, user interface, audio and display features of the car to mirror those of the devices that they use outside the car and especially the smartphone.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- FPGA based Complex System Designs: Methodology and Techniques
- How to tackle serial backplane challenges with high-performance FPGA designs
- How to get more performance in 65 nm FPGA designs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS