Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
The increase in the number, size and quality of displays inside the cabin marks a profound shift in interior design philosophy, from the car as a mobility product to the car as an entertainment hub and workspace.
By Danny Fisher, Gowin Semiconductor
EETimes Europe (August 7, 2024)
With the global transition in the automotive industry from the internal-combustion engine to electric drivetrains well under way, the basis of competition in this market is undergoing a paradigm shift. In the old automotive world, the drivetrain was the primary factor that distinguished one segment from another: Consumers understood the differences in cost and appeal between, for instance, a compact car with a 1-liter petrol engine, a family sedan with a 2-liter diesel engine and a high-performance model with a 4-liter turbocharged petrol engine.
By contrast, there is no such hierarchy of electric drivetrains. Instead, the focus of competition in the electric-vehicle market is more on other factors than on the drivetrain: styling, driving range and, crucially, the in-cabin experience.
It turns out that, given the choice, car buyers want the information, entertainment, user interface, audio and display features of the car to mirror those of the devices that they use outside the car and especially the smartphone.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- FPGA based Complex System Designs: Methodology and Techniques
- How to get more performance in 65 nm FPGA designs
- How to choose an RTOS for your FPGA and ASIC designs
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design